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OPTIMAL WHEREABOUTS SEARCH FOR A MOVING TARGET 

L.D.   Stone and Joseph B.  Kadane 

Suppose we wish to find an object, the target, which is moving according to 

known probability laws.   The search is assumed to last until time T where time 

is discrete (t = 0,..., T) or continuous (0 < t < T). 

Such a search may have a number of purposes.   A common purpose is to 

maximize the probability of detection by time T.   In this case the search is 

called a detection search.   A second purpose is to localize the target to within 

one cell out of a finite number of cells defined by a grid system of the user's choice. 

In this case the searcher may succeed by detecting the target with the search up 

to time T, or failing that, he may guess one cell for the target's location at time T. 

If the guess is correct then the searcher also succeeds.   This is called a where- 

abouts search.   A third type is surveillance search in which one seeks to maximize 

the probability of correctly stating which cell contains the target at time T.   The 

difference between a surveillance search and a whereabouts search is that a detection 

before time T in a surveillance search does not end the search.   It merely helps 

to locate the target at time T. 

This paper deals with the whereabouts search and shows that the optimal 

whereabouts search plan, i.e., an allocation of search effort and a choice of cell 

to guess, may be found by solving a finite number of optimal detection problems 

for a moving target, one for each cell in the grid.   Having shown this we discuss 

how to use the optimal detection search algorithms of Brown [2], Stone et al [16], 

and the bounds given by Washburn [18] to compute optimal whereabouts search plans. 

In the case of a stationary target, as studied by Mela [6], Tognetti [17], and 

Kadane [5], optimal whereabouts search and optimal surveillance search coincide 
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because, once the target is detected, its location is known with certainty from 

then on and in particular at time T.   In addition to the results mentioned above, 

optimal detection search for a moving target has been studied by Stone [13] and 

[14], Stone and Richardson [15], Persiheimo [7], Saretsalo [10], Kellman [4], 

Dobbie [3], Pollock [8], and Stewart [11], 

In the case where false targets are present very few results have been 

obtained even when the target is stationary; see Chapter VI of Stone [12], 

Richardson [9], and Barker and Belkin [1].   In this paper, we do not consider the 

problem of false targets. 

Whereabouts search might be used in a search and rescue situation in which 

it is known that those lost can survive no longer than T units of time in the 

environment.   If the searcher finds the lost party in some search of a cell, 

the rescue can be effected immediately.   If after time T the party has not been 

found, the rescue effort is assigned to some cell and will be successful if 

the lost party is in fact in that cell.   Similarly it might be used in a military 

context in which the object is destroyed as soon as it is found, or a weapon is 

fired into the cell guessed after T if the target has not been previously found. 

By contrast, if it is desired to know where the object is at time T, without 

taking any action if it is found before T, a surveillance search problem results. 
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1.    CHARACTERIZATION OF OPTIMAL WHEREABOUTS SEARCH 
IN TERMS OF OPTIMAL DETECTION SEARCH 

Kadane [5] shows that solving the optimal whereabouts search for a stationary 

target may be reduced to solving J optimal detection problems for a stationary 

target where J is the number of cells in the grid of the target's probability distri- 

bution.   In this section we generalize that result to moving targets. 

Our results apply to targets moving in discrete or continuous space or time. 

Let { X , 0 < t< T} be the stochastic process representing the target's motion. 

For discrete time, we shall understand 0 < t < T to mean t = 0,1,..., T in order 

to state results simultaneously for continuous and discrete time.   The search 

space may be continuous or discrete, but the searcher must specify a whereabouts 

grid of cells for time T.   The size of these grid cells must correspond to the 

degree of localization required for the objective of the search.   For example, 

the cells may be of the size of the lethal area of the weapon to be fired at time T. 

The whereabouts grid has no connection with the target motion which may be in 

continuous space or through a grid of cells entirely different from the whereabouts 

grid.   Let the whereabouts grid have I cells numbered i = 1,2,... ,1. 

Let \£ be the class of allowable detection search plans.   A whereabouts 

search plan is a search plan ^ e * with which to try to detect the target and 

a whereabouts cell i in the whereabouts grid which is guessed to contain the 

target if the detection search fails.   Let S   [#, i] be the probability of success 

using the whereabouts search plan (^, i).   We seek an optimal whereabouts 
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plan (^*,i*), i.e., a plan such that ^* e #,  1 < i* < I, and 

STW *, i*] - max{ S^ty, i] : ip e * and 1 < i < 1} . 

Let C(i) denote the i     cell in the whereabouts grid and let    X* = { X , 0 < t < T J X   £ C(i)} 
t T 

denote the target process obtained by conditioning on the target not being in C(i) at 

time T.   Let P    [$] be the probability of detecting the target with plan ^ given 

that the target is not in cell i at time T.   Then 

ST[^, i] = P^ W 3 (l - Pr{ XT e C(i)})   + Pr{ XT e C(i)} . (1) 

Given that we choose to guess cell i at time T, it is clear that we should choose 

i i i 
the detection search plan ^   to use with i so that ty   maximizes P   .   Since I is 

finite it is also clear that we can find the optimal whereabouts plan by performing 

i* 
I optimizations to determine (^    , i*), such that 

Srp[*1*,i*]=   max  S   [<p\i]. T l<i<I   T 

Since finding #   is simply finding an optimal detection plan for a target moving 

according to the stochastic process X , we have shown that the optimal where- 

abouts problem reduces to solving I moving target detection problems.   We 

state this observation as a theorem. 
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THEOREM.   Let ip1 e <& be an optimal detection plan for the target motion process 

V1      • ä , i. e., 

V1 [ip1] =max{P^[^] iipe*}. 

Then an optimal whereabouts search plan is (tp    , i*) where 

-,i* Srpt^1 , i*] = max ST[^\ i]. 
x l<i<I 

Observe that there are no restrictions on the class ^ of detection plans from 

which we are allowed to choose.   For example, the above result applies to where- 

abouts problems in which ^ is a class of search paths or a collection of functions 

which specify the allocation of search effort in space and time. 

Clearly the above result may be extended to whereabouts problems in which 

the searcher is allowed to choose n> 1 whereabouts cells for the target's location 

if the detection search fails. 
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2.   ALGORITHMS FOR COMPUTING OPTIMAL WHEREABOUTS PLANS 

Using the result of the theorem we now show how one may modify the algorithm 

of Brown [2] or the one of Stone, et. al. [16] (both of which are designed to compute 

optimal detection plans) to compute optimal whereabouts plans. 

These algorithms are designed for discrete time searches and assume that 

there is a grid of J cells in the plane over which search is allocated.   This is the 

search grid.   A search plan $ is a non-negative function of space and time such that 

# (J> t) = effort placed in cell j at time t     for j = 1, , J, t = 1,.. <, T. 

We are restricted to the class *(m) of plans ip such that 

J 
2^(j,t)=m(t)    fort = 0,...,T. 

j=l 

Effort cannot be transformed from one time period to another. 

The detection function is exponential with sweep width which may vary over 

space.   Let W(j) and A(j) be the sweep width in an area of the j    cell for j =' 1,..., J. 

Then we assume 

PTW] = E[l-exp(-j:oW(Xs) 0(Xs,s)/A(Xa))] (2) 

where E indicates expectation over the sample paths of the process and X   is 
s 

the cell that the process is in at time s. 

When target motion is modeled by a mixture of discrete time and space Markov 

processes and the detection function is exponential, the algorithm of Brown [2] 

provides an extremely efficient method of computing optimal detection plans. 

If our target motion process X falls into this category, then we may modify 
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Brown's algorithm to find Pr{X    e C(i)} , tf»\ and P*[^1] as follows. 

Let c(j) for j = 1,..., J indicate the cells in the search grid.   The target moves 

among the cells in the search grid and each cell C(i), i = 1,..., I in the whereabouts 

grid is composed of an integral number of cells from the search grid.'   Let $   be 

the search plan which assigns zero effort everywhere.   Using Brown's notation 

we first choose a whereabouts cell C(i) and compute 

Pr{X    e C(i)}  = 2        reach (c(j),T^°). 
{j:c(j)eC(i)} 

Here we are simply using the initial distribution at time 1 and iterating the 

transition matrix of the Markov process (or processes) to compute Pr{ X   e C(i)} . 

We modify the initialization of the survive matrix by setting 

0 if c(j) e C(i) 
survive (c(j),T,#>) = { for j = 1,..., J, 

1 ifc(j)^C(i) 

for any search plan ip.   The result of modifying the survive matrix in the above manner 

is to remove the paths which end in whereabouts cell C(i) at time T.   Once can 

show that the resulting process X is still Markovian if X is Markovian or a 

mixture of Markov processes if X is a mixture of Markov processes.   In 

either case Brown's [2] algorithm is applicable to A  and is used to compute an 

optimal plan and probability of detection for that plan.   The resulting plan will 
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be 4>   and the resulting probability of detection will be P   [ip ] (1 - Pr[ X   e C(i)} ). 

By doing this for each whereabouts cell C(i), i = 1,..., I, and by choosing the 

•    / i* pair (ip   ^i*) with the highest probability of success as calculated by equation (1), 

we have found the optimal whereabouts plan. 

Rather than perform the two step procedure of calculating Pr{ X   e C(i)}  and 

P   [<f> ](1-Pr{ X   e C(i)} ), it is more efficient to minimize failure to detect using 

the defective process obtained from the above initialization of the survive matrix. 

The resulting probability will be 

F1 = (l-P^1])(l-Pr{XTe C(i)}) 

and 

l-F^Pr{XTeC(i)}  + P^1] (l-PrfX^ C(i)} ) 

= ST^\i]. 

Actually Brown's algorithm is an iterative one which converges to the optimal 

plan in an infinite number of steps.   However, after each iteration in the algorithm 

one obtains a lower bound (the probability of detection for the plan obtained from that 

iteration) and an upper bound by the method of Washburn [18] (see Section 4). These in turn 

"*       i • • 
may be converted to upper S   [# ,i] and lower ST|^\i] bounds for S^Si] by using equation. (1). 

With these bounds one can save computing time by using a branch and bound technique. 

That is, one specifies a tolerance e for how close to the success probability of 

the optimal plan he wishes to come.   Choose an initial whereabouts cell i' and 

i' i' 
iterate until S   [ip   ,V] - S[^   ,i'] < e .   For each succeeding choice of a whereabouts cell 
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C(i) stop the iteration to determine ip   if either S   [ip ,i] < S   [ip   ,i'] or S   [ip ,i] > S   [ip   ,i']. 

i' 
If the former occurs, retain (ip   ,i') as the candidate optimal plan.   If the latter occurs, 

then replace i' with i and continue iterating until the tolerance e is met for the new 

candidate i'.   If one cannot decide between two possible solutions on the basis 

given above (i.e., the tolerance interval for one plan overlaps the other), then 

one can choose between them in an arbitrary fashion.   For example, one could 

choose the one with the higher lower bound. In this way one will be guaranteed to obtain 

a solution within the desired tolerance. 

If the target motion is more general than a mixture of discrete space and time 

Markov processes, then one can modify the algorithm in Chapter IV of Stone, et. al. 

[16] as follows. 

Using the notation of Stone, et. al., [16] we sort the sample paths by which cell in 

the whereabouts grid contains the target at time T.   Choose a whereabouts cell C (i). To obtain 

Pr{X   e C(i)} , we sum the probabilities of the paths ending in C(i).   Removing 

these paths from the file of sample paths, we solve for ip , the optimal detection 

search plan, using the remaining paths.   The probability of detection resulting 

from this procedure will be P   [ip ](1-Pr{ X   e C(i)} ). (Again it is more efficient 

to minimize the failure probability on the defective process obtained by removing 

the paths ending in cell C(i).   One minus this probability is S   [ip ,i].) We then 

proceed using the above branch and bound technique to find the optimal whereabouts 

i* 
plan {ip    , i*) to the desired tolerance. 
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3.   EXAMPLES OF OPTIMAL WHEREABOUTS PLAN 

We give three examples of optimal whereabouts search plans.   The first example 

shows that even when the detection function is exponential and the sweep width   the 

same in all cells, it is not necessarily optimal to choose the cell with the highest 

prior probability at time T for the whereabouts cell.   The second example shows 

a situation in which the optimal whereabouts cell is the one with the highest 

probability at time T when no search is applied at any time period.   The third 

illustrates how the whereabouts search procedure balances detection capability 

against target location probability in choosing the whereabouts cell. 

For the three examples presented in this section the whereabouts grid 

coincides with the search grid.   The probability of detection using plan ip is 

given by equation (2). 

Example 1:   For stationary whereabouts searches, Kadane [5] shows that when 

the cost and detection function are the same over all the cells in the whereabouts 

grid, then it is optimal to choose the cell with the highest prior probability for 

the whereabouts cell.   For whereabouts searches involving moving targets, 

one might conjecture that this result would generalize by choosing as the 
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whereabouts cell the one with the highest probability at time T when no search 

is applied.   We now show this conjecture to be false. 

Let the search and whereabouts grid consist of two cells.   Time is discrete 

and there are two time periods for search, t = 0,1.   There are three.possible 

target paths.   The paths and their associated probabilities are shown in Table 1. 

We use the notation OJ1 = (1,1) to mean that path 1 is in cell 1 at time 0 and remains 

in cell 1 at time 1.   Table 1 also shows the target distributions if no search is 

conducted.   We see that cell 2 has the highest probability at time 1.   There are two 

units of search effort available at each time period, and W(j)=A(j) = l.for j = 1, 2. 

TABLE   1 
r 

a.   TARGET PATHS AND PROBABILITIES 

Note: e < 1/4. 

Path Probability 

^ = (1,1) € 

co2 = (2,1) i-2e 

co3=(2,2) 2+e 

b.   TARGET DISTRIBUTIONS 

Target Distribution at Time 0 

Cell Probability 

Target Distribution at Time 1 

Cell Probability 

1. 

1-e 

1. 

2. 

i-c 

k+e 
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Let Tr be the failure probability for the whereabouts plan which chooses cell j 

for the whereabouts cell and allocates its detection search optimally for the 

process XJ which has the sample paths ending in cell j removed.   Then F* = 1-SJ^,j]. 

Suppose we choose 1 for the whereabouts cell.   Since a>„ is the only path not 

1 
ending in cell 1, the plan #   puts 2 units of effort in cell 2 at time 0   and time 1. 

Thus, 

F1 = (i+e)e"4. 

2 
If we choose 2 for the whereabouts cell, then $   places all the effort for time 

t = 1 in cell 1.   By Brown [2] or Theorem 2 of Stone [14], we find the optimal 

allocation at time 0   by computing the posterior distribution at time 0 (using only 

a;   and co ), given failure to detect at time 1, and allocating the effort for time 0 

2 
to be optimal for this posterior distribution.   If e is small enough, then ip   will 

place all effort in cell 2 at time 0 and 

2 -4 -2 
F   =(|-2e)e     +ee    . 

2       1 -2 -2 
Since F  - F   = e e    (l-3e    ) > 0, it follows that choosing cell 1 yields the lower 

failure probability (higher success probability) and that the optimal whereabouts 

plan chooses cell 1 for the whereabouts cell rather than the higher probability cell 2. 

Observe that no matter how small e is, cell 2 has the larger probability of 

containing the target at time 1 given no search.   By making e small enough 

the searcher is forced to place all his effort in cell 2 at time 0 regardless of 

which whereabouts cell he chooses.   However, searching in cell 2 at time 0 

causes cell 1 to be the high probability cell at time 1 given failure to detect 

at time 0.   Thus cell 1 rather than 2 becomes the optimal whereabouts cell. 
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Example 2:  Uniform Sweep Width.  This example shows a situation in which 

the cell having the highest probability of containing the target at time T, if no 

search takes place,is the optimal one to choose for the whereabouts cell. 

The target distribution at time 0 is bivariate normal with center at 30° 10' N 

30   10'W.   The major axis is oriented east-west, and the standard deviation along 

the major and minor axes is 50 and 30 nautical miles, respectively.   At time t = 3, 

the target's distribution is circular normal with center at 28  10'N, 30   10'W 

and standard deviation     10 nautical miles along any axis.   The target paths are 

obtained by making an independent draw for the target's position at time t = 0 and 

t =3 from the above distributions.   The target then follows a constant course 

and speed between these points.   Four thousand sample paths were drawn to 

represent the target motion process. 

Figure 1 illustrates the target motion assumptions and shows some typical 

target paths.   Both the search and whereabouts grid consists of cells which 

are 20' by 20' as indicated in the figure.   The sweep width W(j) = 1 for all cells j, 

and there are 1500 units of search effort available at each time period.   In sub- 

sequent figures we will show only the region of the grid in which the target location 

probabilities are positive. 

Figure 2 shows the probability distribution in the whereabouts grid at time 3 with 

no search having taken place at any time period.   The algorithm used to find the 

optimal whereabouts plan is a modification of the one given in chapter IV of Stone et al 

[16].   It proceeded by choosing the highest probability cell in this grid and computing 

the optimal plan given this choice to within a tolerance of . 001.   This tolerance 

was reached at 3 iterations.   An iteration consists of one complete cycle through 
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HGJÜ_R.E_2 

TARGET DISTRIBUTION IN WHEREABOUTS GKID AT TIME 3 WHEN NO 
SEARCH  IS APPLIED DURING ANY TIME  PERIOD 

NOTE:   ENTRIES HAVE BEEN MULTIPLIED BY 10 

OOIOO 
0     27     96    31        0 

28°N—2 J 33  426   126        3 

0     30     91     31        0 
0       0        0   |   0       0 

30°W 
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the time periods.    For convenience in referring to the cells in the whereabouts 

grid in Figure 2, we number them starting with the bottom row and numbering 

from left to right.   The highest probability cell is cell 13.   Table 2 shows the 

convergence of the algorithm, which chooses cells in the order of highest to 

lowest probability in Figure 2.   Since the high probability cell in Figure 2 is the 

optimal whereabouts cell for this problem, the initial guess is optimal and the 

remaining guesses are eliminated very quickly after one or two iterstions 

(see Table 2).   The optimization algorithm required 702 CPU seconds on a 

Prime 400 minicomputer.   This time does not include the time necessary to 

generate the sample paths for the target motion process. 

Figure 2 shows the target distribution before search and the optimal 

allocation of search at times t = 0,1,2,3 for this example.   The rectangle 

in the target distribution outlines the region in which search is placed at 

that time period.   Observe that no effort is placed in the high probability cell 

at time 0 and time 3 whereas substantial amounts of effort are placed in the 

high probability cell at times 1 and 2.   Since the high probability cell at t = 3 

is also the whereabouts cell, it is clear that no search should be placed in 

this cell at time 3.   Also, points that start in the high probability cell at time 0 

are likely to end up in the high probability cell at time 3 by the way we have 

chosen our target paths.   This explains why no effort is placed in the high 

probability cell at time 0.   However, at times 1 and 2 the high probability cell 

contains points from paths that start and end on the edges of the distributions at 

times t = 0 and t = 3 but cross over the center at times 1 or 2.   Thus it is 

profitable  to search these cells.   Figure 4 shows the target distribution given 
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TA_BLE_2 

CONVERGENCE OF ALGORITHM TO OPTIMAL WHEREABOUTS PLAN 

Note: Solution tolerance  . 001 

Whereabouts Cell Number of 
Chosen Lower Bound Upper Bound Iterations 

13 .8619 . 8623 3 

12 . 8370 .8447 2 

14 .8358 .8432 2 

18 .8303 .8382 2 

8 .8292 .8340 2 

9 .7996 .8470 1 

19 .8010 .8470 1 

7 . 7979 .8447 1 

17 .7980 .8436 1 

15 .7843 .8303 1 

11 .7849 .8308 1 

23 .7837 .8300 1 
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failure of the detection search. 

Example 3:  Variable Sweep Width.   The assumptions are the same as in 

example 2, except the sweep width is 1 to the east of 30   20' W and 0. 1 to the 

west.   If no search takes place the distribution at t=3 remains as given in Figure 2. 

However, the optimal whereabouts plan for this search does not choose the high 

probability cell in Figure 2 for the whereabouts cell.   Instead the cell directly 

to the west is chosen.   The reason for this is that the optimization algorithm 

o 
takes into account the fact that it is very difficult to search west of 30  20'W 

(i.e., W = 0.1) and that it is more efficient to use search effort where the 

detection capability is high (i.e., in the high probability cell) and make the 

wereabouts guess in a cell where detection capability is poor. 

Figure 5 shows the target distribution and optimal search allocation for the 

optimal whereabouts search plan.   The rectangle in the target distribution outlines 

the area in which search effort is applied.   Figure 6 shows the target distribution 

given the detection search has failed to find the target.   Note, that the whereabouts 

cell is now the high probability cell.   Observe that all search takes place in 

the area where detection capability is good.   However, no effort is placed in 

the high probability area at time 0 even though it is in the good detection region'. 

The detection probability at the end of time 3 is 0. 74 which is 

higher than the detection probability of 0.66 at the end of time 3 in example 2 even 

though the sweep width is uniformly as large or larger in example 2 than in 

example 3.   The reason for this is that the detection search in example 3 searches 

the high probability cell at time 3 in contrast to example 2 which puts no search in 

that cell because it is the whereabouts cell.   However the probability of success in 

example 2 (0. 86) is higher than in example 3 (0. 82). 
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A glance at Figure 6 explains why no search effort is placed in the 

poor detection region.   Virtually all the target paths that terminate in this 

region are located in the whereabouts cell so that no search is required. 
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0 37 54 38 9 2 
4 35 96 138 107 37 5 
1 15 

1 ° 
37 62 40 13 1 

0 1 3 1 ° 0 0 

31°W 30°W 

OPTIMAL ALLOCATION OF EFFORT FOR TIME 2 

29°N — 0 125 62 0 
282 388 342 13 

0 232 55 0 

30°W 

PROBABILITY OF DETECTION BY THE END OF TIME 2 = 0.52 
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TARGET DISTRIBUTION BEFORE SEARCH AT TIME 3 

NOTE« ENTRIES HAVE BEEN MULTIPLIED BY I03 

0 
0 
2 
0 
0 

0 1   0 0 

28°N- 
14 
63 
14 

48  17 
202  60 
45  15 

0 
1 
0 

0 0 | 0 

30°W 

0 

OPTIMAL ALLOCATION OF EFFORT FOR TIME 3 

28°N 

0 
433 

0 

337  0 
0 415 

315   0 
1 
i 

30°W 

PROBABILITY OF DETECTION BY THE END OF TIME 3 =0.66 
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F2GU_RE_4_ 

TAB GET DISTRIBUTION FOLLOWING UNSUCCESSFUL 
SEARCH AT TIME 3 IN UNIFORM SWEEP WIDTH EXAMPLE 

Notes:   1.   Entries are multiplied by 10. 

2.   The cell enclosed by the dashed lines 
is the optimal whereabouts cell.   If the 
target is not detected by the end of time 3, 
this cell is guessed to contain the target. 

29°N-0 
0 

28°N-^ 

0 
1 

0 
28 
54 
42 

0 

1        0 
67     33 

;"594~i   54 
55     44 

0       0 
1 

0 
0 
3 
t 
0 

31°W 30°W 

PROBABILITY OF SUCCESS IN WHEREABOUTS SEARCH - 0. 86 
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F2G_URE_5 

VARIABLE SWEEP WIDTH EXAMPLE 

TARGET DISTRIBUTION BEFORE SEARCH AT TIME 0 

NOTE:   ENTRIES  HAVE  BEEN MULTIPLIED BY   104 

31°N- 

30°N — 

0 0 0 0 0 0 0 2 0 2       0 0 0 0 0 0 0 0 0 
0 0 0 2 5 2 5 5 2 7     17 15 0 0 0 2 2. G 0 
0 0 

0 
5 
5 

5 
17 

10 
30 

17 
57 

35 
75 

35 
145 

45 
155 

52     57 45 32 12 .17 2 
22 

2 
0 

0 
5 

2 
0 147   177 90 95 55 37 7 
2 10 7 52 67 122 187 205 277 270  245 232 180 107 65 27 22 7 0 
2 12 7 35 77 117 227 290 332 370 362 302 215 132 62 37 22 7 5 
0 7 

5 
7 

15 
47 
22 

65 
35 

120 
55 

192 
135 

245 
105 

257 
122 

275  290 232 172 90 97 30 
17 

25 
10 

5 
2 

7 
0 145   135 107 77 67 47 0 
0 0 2 5 17 20 40 35 45 47     40 32 30 17 10 2 2 0 0 
0 0 0 0 0 2 0 10 17 10     22 15 ,    2 5 2 0 2 0 0 
0 i° 0 0 1   ° 0 0 i ° 0 5I   2 0 ,0 1   ° 0 0 1  ° 0 0 

23°N 32°W 31°W 30°W 29°W 28°W 

OPTIMAL ALLOCATION OF EFFORT FOR TIME 0 

30°N 

0 101 
98 
0 
95 

18 
95 
28 

30°W 

0 
86 
127 
1 It 

207 
86 

.104 

0  0 
65 
176 
0 

I 
29°W 

0 
0 

105 

PROBABILITY OF DETECTION BY THE END OF TIME 0 = 0.08 
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FJ[GU_^E_^j[con^^u_^d)_ 

TARGET DISTRIBUTION  BEFORE SEARCH AT TIME   1 

NOTE:   ENTRIES  HAVE  BEEN MULTIPLIED  BY   JO4 

0 0 2 5 7 7 10 22 5 0 2 0 0 
30°N     0 

5 
5 

15 
15 
82 

45 
142 

75 
2 77 

115 131 110 70 37 15 
40 

2 
22 

5 
454 420 369 232 152 5 

10 15 90 232 470 679 659 552 323 195 72 47 7 
o r\OivT 2 

0 
22 

2 
62 

5 
167 
52 

350 
77 

393 414 422 188 168 74 
7 

22 
2 

5 
29"N 100 150 102 65 45 0 

0 0 0 2 5 10      12 22 5 0 2 0 0 
0 I   ° 0 0 .   ° 0       2 .    ° 0 '0 1   ° 0 0 

326W 31°W 30°W 2 
I 

9°W 

OPTIMAL ALLOCATION  OF  EFFORT  FOR TIME  1 

30°N 

29°N 

186  215 
188  235 
125   229 

I 
30°W 

88 
72 
14 

6 
66 
75 

29°W 

PROBABILITY OF DETECTION  BY THE END OF TIME 1   =0.22 
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JfJ^URE_5_(cj)_ntJ.nued)_ 

TARGET DISTRIBUTION BEFORE SEARCH AT TIME 2 

NOTE! ENTRIES HAVE BEEN MULTIPLIED BY I03 

29°N 

0 0 
13 

t 
46 

2 I 0 0 
0 57 33 9 2 
4 37 134 143 81 33 5 
! 16 

0 
47 

1 
61 35 12 J 

0 3 0 0 0 

31°W 30^ 

OPTIMAL. ALLOCATION OF EFFORT FOR TIME 2 

29°N 221  71 
433 314 
284  70 

I 
30°W 

0 
57 
0 

PROBABILITY OF DETECTION BY THE END OF TIME 2 = 0.45 
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FIGURE   5   (continued) 

TARGET  DISTRIBUTION  BEFORE SEARCH AT TIME 3 

NOTE*   ENTRIES  HAVE  BEEN  MULTIPLIED BY  103 

28°N- 

0 0 
16 

I 0 0 
0 57 17 0 
2 79 231 61 I 
0 18 

0 
50 15 0 

0. 0 ,   0 0 

30°W 

OPTIMAL ALLOCATION OF EFFORT FOR TIME 3 

257 0 
751 282 
210  0 

PROBABILITY OF DETECTION BY THE END OF TIME 3 =0.74 
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FiGU_RE.JL 

TARGET DISTRIBUTION FOLLOWING UNSUCCESSFUL 
SEARCH AT TIME 3 IN VARYING SWEEP WIDTH EXAMPLE 

Notes:   1.   Entries have been multiplied by 10. 

2.   The cell enclosed by the dashed lines is the optimal 
whereabouts cell.   If the target is not detected by the 
end of time 3, this cell is guessed to contain the 
target. 

0   0 2 0 0 
0^ 33^ 84 33 0 
7 1306] 106 106 3 
2  71 106 57 I 
0  0 0 0 0 

PROBABILITY OF SUCCESS IN WHEREABOUTS SEARCH = 0. 82. 
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4.   WASHBURN'S UPPER BOUND 

This section contains a brief description of the upper bound given by Washburn [18], 

Let P   be defined as in equation (2) and let # and jp e *.   Then 

P' 14>, J-*] =  um 7- (PT[*+6(J-*)] -PT[*1) 

is the Gateaux differential of P   at $ in the direction #>-$.   Let E    indicate expectation 

conditioned on X, = j. and define 
t    J' 

T 
DT[*,J.t] = E.t[^||exp(- S   W(Xt) ^(X^tj/ACXj)] ptö) for 0€*. l<j< J, l<t<T, 

where p (j) = Pr{x =j} .   Then Stone [14] shows that 
L L 

T     J 
S     S P' [*,*-*] =   S     S   D   [qp.j.t] [*ö.t)-*Ö.t)]. 

Since P    is a concave function, one can show that (see the proof of Theorem 1 in 

Stone [14]) 

PTty] -PT[^] <   P^I*,*-*] 

T    J 
S    S   D  [fl.j.t]   Jö.t) -DT[^,j,t] tf»(j,t), 
t^0j=l 

For t = 0,  ..., T, let 

X (t) = max{ D  [0, j, t] : 1 < j < J> 

A (t) = min{ D  [#t j, t] : 1 < j < J and $ (j, t) > O} . 
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Then 

PTM - P  [0] <   S   (A(t)-X(t)) m(t) for ipJeM**). 
t=l 

This is Washburn's upper bound.   Note that the right-hand side depends only on if> 

and the bound holds for any ^ct (m), in particular for the plan $ * which maximizes 

detection probability at time T within * (m).   The necessary conditions of Stone [14] 

guarantee that Ä. (t) = X (t) when if> = $*. 
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